班轮船期表设计

一、班轮船期表定义

船期表(sailling Schedules)是以表格的形式反映船舶在时间和空间上运行程序的计划文件,如下表所示,船期表主要内容包括船名、航次编号、始发港、中途港和终点港的港名,到达和驶离各港的时间。

中远集运亚洲/地中海快航(AMX1)

COSCON ASIA/MEDITERRANEAN EXPRESS SERVICE

Port Code: TAO-Qingdao, PUS-Pusan, SHA-Shanghai, NGB-Ningbo, SHK-Shekou, PKG-Port Klang, SZC-Suez Canal(T/S), PSD(W)-Port Said(West), SPE-La Spezia, GOA-Genoa,

week	VESSEL NAME	VSL OP	VSL CODE		VOYAGE				青岛		上海		宁波		蛇口		巴生		苏伊士	
									TAO02		SHA41		NGB04		SHK01		PKG03		SZC99(T/S)	
			IRIS2	CSCL/ UASC	IRIS2		COMMON		ETB	ETD	ETB	ETD								
									FRI	FRI	SAT	SUN	MON	TUE	THU	FRI	TUE	TUE	SUN	SUN
									00:00	20:00	23:00	23:00	11:00	07:00	06:00	06:00	04:00	21:00	01:00	16:00
44	AL SAFAT	UASC	RF7	SAFA	100W	100E	1444W	1444E	31/10	31/10	01/11	02/11	03/11	04/11	06/11	07/11	11/11	11/11	23/11	23/11
45	CSCL EUROPE	CSCL	QB2	CSEU	012W	012E	1445W	1445E	07/11	07/11	08/11	09/11	10/11	11/11	13/11	14/11	18/11	18/11	30/11	30/11
46	натта	UASC	RF8	ната	034W	034E	1446W	1446E	14/11	14/11	15/11	16/11	17/11	18/11	20/11	21/11	25/11	25/11	07/12	07/12
47	XIN HONG KONG	CSCL	RVK	сѕнк	010W	010E	1447W	1447E	21/11	21/11	22/11	23/11	24/11	25/11	27/11	28/11	02/12	02/12	14/12	14/12
48	AL HILAL	UASC	RU4	HILA	037W	037E	1448W	1448E	28/11	28/11	29/11	30/11	01/12	02/12	04/12	05/12	09/12	09/12	21/12	21/12
49	CSCL LE HAVRE	UASC	QYA	LEHV	001W	001E	1449W	1449E	05/12	05/12	06/12	07/12	08/12	09/12	11/12	12/12	16/12	16/12	28/12	28/12

二、班轮船期表的作用

班轮公司制定并公布船期表有多方面的作用:

- 1.招揽航线途经港口的货载。班轮公司在何时间、何地点提供班轮运输服务,需要提前告知运输需求方,托运人可以根据船期计划来制定其生产计划,给予托运人这种便利性,可以提高船舶的载箱量利用率。
- 2.有利于船、港、货的及时衔接。船方、港方及货方按计划、有秩序地从事生 产和流通,提高工作效率,减少货物的流通时间。

三、船期表编制的前提

- 1.班轮航线已经开辟或即将开辟
- 2.班轮挂靠港口及挂靠顺序已经确定
- 3.投入到航线上的船舶已知

四、编制船期表的注意事项

- 1.发船间隔时间要恰当。班轮的发船间隔时间不仅要具有一定的规则性,还应该考虑航线货流量、船队规模以及竞争的情况。
- 2.船期表对海上、港口可能造成的船期延误应有适应性。由于天气、海况、以及港口生产作业的衔接等原因,船舶可能不能按时抵达港口,造成船期的延误。因此,在制定船期表时,应该预留出缓冲时间(BUFFER TIME)。缓冲时间越长,班轮的准班率越高,但是同时也是运力资源的浪费。因此,应该根据大量的统计数据以及船公司管理人员的经验,来确定缓冲时间。
- 3.船舶到达时间和驶离港口的时间要恰当。首先,应该避免与使用同一泊位的其它 班轮在同一时间到达港口,其次,应该避免在非工作日到达港口,以减少在港口的非工作停泊时间,加速船舶周转。最后,还应该考虑托运人生产安排和结汇的方便性。

1.航线配船数计算

一条班轮航线通常需要配置船舶的艘数要由货运需求(量的多少及发到船频率)、单船装载能力和往返航次时间等因素决定,算式为:

$$m = \frac{t_r \cdot Q_{\text{max}}}{\alpha_b \cdot D_d \cdot T}$$

式中, m ——配船数

 Q_{\max} ——运量较大航向的年货物发运量(t)

 α_b ——船舶载重量利用率

 D_d ——船舶净载重量(t)

T ——平均每艘船舶年内营运时间

2.发船间隔时间的计算

发船间隔是指一个班次的船舶驶离港口后,直至下一班次的船舶再次驶离该港的间隔时间。它是 由船舶往返航次时间及航线配船数确定,即

$$t_i = \frac{t_r}{m} = \frac{\alpha_b \cdot D_d \cdot T}{Q_{\text{max}}}$$

式中, m ——配船数

 $Q_{
m max}$ ——运量较大航向的年货物发运量(${f t}$)

 $lpha_b$ ——船舶载重量利用率

 D_d ——船舶净载重量(t)

T ——平均每艘船舶年内营运时间

3.发船频率的计算

发船间隔的大小也可用发船密度或称发船频率来表达,所谓发船密度是指单位时间内的发船数量, 它与发船间隔互为倒数,即

$$\gamma = \frac{1}{t_i}$$

式中, γ ——发船频率 (艘/单位时间)

$$t_i$$
 ——发船间隔时间

4.到发时间的计算与调整

由于班轮运输的特点,班轮的预计到港时间(ETA)和预计靠泊时间(ETB)多数情况下是相等的。用i,j表示班轮两个挂靠港,且 $j \geq i+1$,那么

$$ETD_{(i)} = ETA_{(i)} + t_{\mathop{\hbox{\pm}}} + t_{\mathop{\hbox{\oplus}}} + t_{\mathop{\hbox{\oplus}}} = i)$$
 $ETA_{(j)} = ETD_{(i)} + t_{\mathop{\hbox{\inf}}} + t_{\mathop{\hbox{\inf}}} = ij) + t_{\mathop{\hbox{\inf}}} = ij)$
 $t_{\mathop{\hbox{$\inf$}}} = \frac{L_{\mathop{\hbox{\inf}}} + t_{\mathop{\hbox{\inf}}} + t_{\mathop{\hbox{\inf}}} = ij)}{v} + t_{\mathop{\hbox{\inf}}} = ij)$

$$t_{$$
时差 $(ij)}=t_{oxed{\boxtimes}(j)}-t_{oxed{\boxtimes}(i)}$

