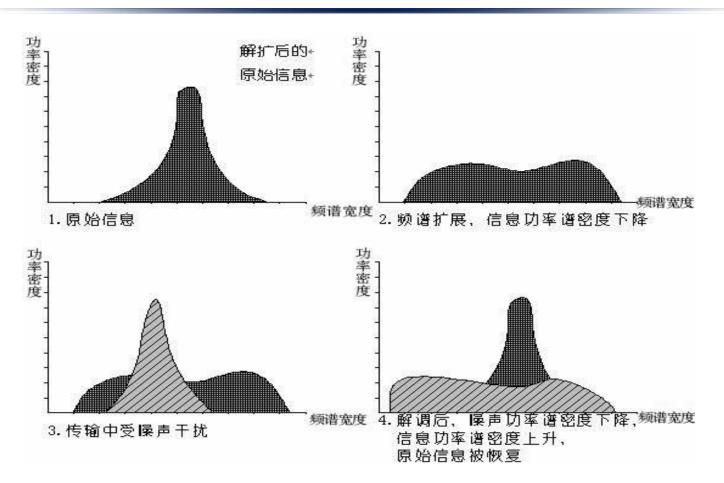

主讲人:李亮

卫星导航信号应具备的功能特点

- (1) 确保系统精度,完成卫星的多址区分。
- (2) 能在一定程度的多径干扰下正常工作。
- (3) 能容许一定电平的随机或故意干扰、堵塞或模仿GPS信号的欺骗干扰。

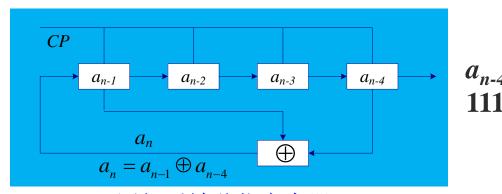
GPS卫星发射的信号采用直接序列扩频调制体制,在发送端对导航电文进行扩频调制和载波调制,在接收端利用信号的相关性予以解调。

DIGITAL MODULATION



扩频通信原理

将待传输信息的频谱通过编码使之扩大许多倍,送入信道中传输,在接收端通过解码将信息还原。由于在信道中实际传输的信号比原始信号的频谱扩展了许多倍,因此称之为扩频通信。


GPS系统采用CDMA多址技术的原理是基于扩频技术,即将需要传送的信息数据,用一个带宽远大于信号带宽的高速伪随机码和它相乘,使原数据信号的带宽被扩展(扩频),再经载波调制发送出去。接收端则使用完全相同的伪随机码,对解调出来的宽带信号做相关处理,把宽带信号变换成原信息数据的窄带信号(解扩),以实现信息通信。

扩频通信原理

最长线性移位寄存器序列一m序列

不同的移位寄存器反馈方式,可以产生不同的二元序列,周期 最长的称为m序列 (maximum sequences)。

 a_{n-4} 11110101100100011110...

四级反馈移位寄存器

四级移位寄存器最多有24-1=15种不同状态,其中全0状态不允许出现,若处于全0状态,则输出将持续地为0,因此,最多有15个状态。

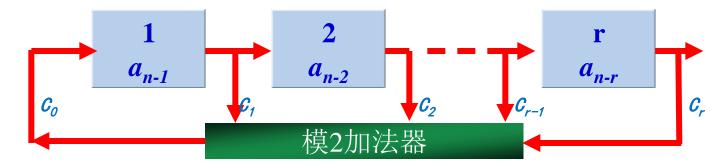
状态编号	1	各级 ②	数状态 ③	\$	模2加反馈 ①⊕④	末级输出的 序列
1	1	1	1	1	0	1
2	0	1	1	1	1	1
3	1	0	1	1	0	1
4	0	1	0	1	1	1
5	1	0	1	0	1	0
6	1	1	0	1	0	1
7	0	1	1	0	0	0
8	0	0	1	1	1	1
9	1	0	0	1	0	1
10	0	1	0	0	0	0
11	0	0	1	0	0	0
12	0	0	0	1	1	1
13	1	0	0	0	1	0
14	1	1	0	0	1	0
15	1	1	1	0	1	0

最长线性移位寄存器序列一m序列

同族m序列:

由相同级数的移位寄存器组成但反馈逻辑不相同而产生的m序列, 称为同族m序列。

r 级移位寄存器可产生的同族码序列个数Jr可按下式计算:


$$J_r = \varphi(2^r - 1) / r$$

 $\phi(x)$: 欧拉函数,其数值可等于1, 2, ..., (x-1) 中所有与x互素的正整数的个数。

最长线性移位寄存器序列一m序列

反馈移位寄存器的反馈逻辑用特征多项式函数表示:

$$F(x) = C_0 x^0 + C_1 x^1 + C_2 x^2 + \dots + C_r x^r = \sum_{i=0}^r C_i x^i$$

m序列的统计特性和相关特性

- 1. 每一周期内,两种元素出现的次数仅相差一次,即"1"的个数比"0"的个数多一个。
- 2. 每一周期内,长度为n的游程(同一元素连续出现n次)出现的次数比长度为(n+1)的游程出现的次数多一倍。
- 3. r级移位寄存器最多可能有2r种不同的状态,线性反馈最多允许有2r-1种(排除全0状态)。
- 4. 伪噪声特性: m序列在出现概率、游程分布和自相关函数等特性上与随机噪声十分相近。

m序列的相关特性

当 $x_1(t)=x$ 时t) 为 $\rho(t)$ (或 $x_1(t)$)的自相关系数

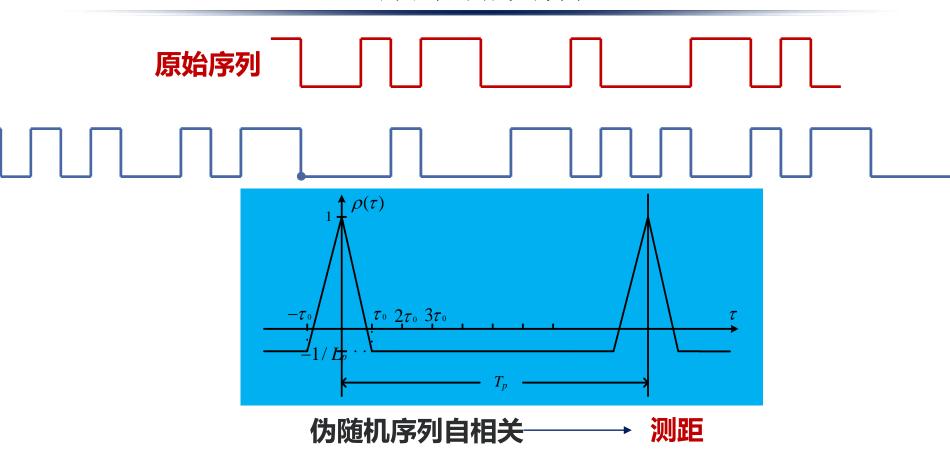
$$\rho(\tau) = \frac{1}{T_p} \int_0^{T_p} x_1(\tau) x_1(t - \tau) dt$$

对于码长为 L_P 二元码m序列,其自相关和互相关函数分别为:

$$\begin{cases} \rho(\tau) = \frac{1}{L_p} \sum_{m=1}^{L_p} a_m a_{m-(\tau)} \\ \rho(\tau) = \frac{1}{L_p} \sum_{m=1}^{L_p} a_m b_{m-(\tau)} \end{cases}$$

$$\tau$$
 时刻序列错开的码 元数量

m序列的相关特性


对于m序列,自相关函数为

$$\rho(\tau) = \begin{cases} 1 & \tau = 0, \pm T_p, \pm 2T_p, \dots, \pm nT_p \\ -\frac{1}{L_p} & \tau \neq 0 \quad \vec{\boxtimes} \quad jT_p (j = \pm 1, \pm 2, \dots, \pm n) \end{cases}$$

注:m序列的周期为Tp, τ为整数倍周期时,m序列的自相关值为1

(具有最大相关性) , 否则为m序列周期的负倒数 (极小值)

m序列的相关特性

m序列的互相关特性

若一个r级m序列, r≤16, 且r≠4i(i=1,2...),则存在一组m序列 (Mr个), 其两两互相关函数为一个三值函数 (r为移位寄存器级数)。

$$\rho(\tau) = \begin{cases} -\frac{1}{L_p} \\ -\frac{t(r)}{L_p} \\ \frac{t(r-2)}{L_p} \end{cases}$$

m序列的互相关特性

r	同族M序列数 <i>Jr</i>	码长L,	max	Mr	t(r)/L _P
5	6	31	0.29	3	0.290
6	6	63	0.36	2	0.270
7	18	127	0.32	6	0.134
8	16	255	0.37	0	0.129
9	48	511	0.32	2	0.065
10	60	1023	0.37	3	0.064

此组内的m序列具有良好的互相关特性。若用此组内的各m序列作为各卫星的伪随机码,则不同卫星的信号就不会造成严重干扰,解决了目标识别问题(码分多址)。

主讲人: 李亮