
船舶技术设计

5.3.2 总体布置与船舶浮态

【学习目标】

- 1、掌握船舶浮态调整的方法和步骤
- 2、初步船舶浮态调整的能力

一、总体布置与船舶浮态

所谓浮态就是指平均吃水和纵倾,通常以首、尾吃水来表示,它对船舶的安全性、快速性和使用性能都有影响。

对一般运输船舶,设计中最主要考虑的典型装载情况是:满载出港、满载到港、压载出港和压载到港四种情况。

满载情况的浮态应基本平浮或适当尾倾,一般不允许首倾。

压载状态船的平均吃水较小,为保证螺旋桨浸没于水中,必须有一定的尾倾,但也要保证船首有一定的吃水。

在总布置设计时,必须很好地考虑压载舱的布置,并且要对各种装载情况的浮态加以核算。如果不符合要求,则要进行纵倾调整。

1、计算船舶的重力重心

步骤如下:

- (1) 按项目二所述方法计算空船的重力和重心位置。空船的重心位置既包括其纵向位置 \mathbf{x}_{gE} ,还要包括其高度值 \mathbf{z}_{gE} 。
 - (2) 计算各货舱的货物重力 W_{Ci} 和相应的重心位置 x_{gi} 和 z_{gi} 。
 - (3) 计算燃油、滑油、淡水等各液舱的重力 W_{Ci} 和重心位置。
- (4)人员、行李、食品等项的重力和重心位置计算,也可按项目三所述方法进行。
- (5) 压载水重力 W_B 及其重心位置的计算与计算油、水舱的方法相同。

2、计算载况浮态和初稳性

载况浮态和初稳性计算

 序号	位口	并 /	<u> </u>	米/店
一	项目	<u> 单位</u>	符号及公式	数值
	排水体积	m^3	∇	
2	排水量	t	\triangle	
3	平均吃水	m	d	
4	重心距船中	m	X_{G}	
5	浮心距船中	m	X_{B}	
6	每厘米纵倾力矩	t m	MTC	
7	纵倾值	m		
8	漂心距船中	m	X_{F}	
9	首吃水变化	m		
10	尾吃水变化	m		
11	首吃水	m	$d_{F}=d+\delta d_{F}$	
12	尾吃水	m	$d_A = d + \delta d_A$	
13	重心距基线	m	Z_{G}	
14	横稳心距基线	m	Z_{M}	
15	初稳性高	m	$GM_0 = Z_M - Z_G$	
16	自由液面修正值	m		
17	修正后的初稳性高	m	GM=GM ₀ −δ GM	
18	横摇周期	S	T_{ϕ}	

3、浮态调整方法

由上表的计算结果就可以知道某载况的浮态,如不符合要求,则应进行调整以达到适宜的浮态,具体方法如下:

- (1)调整机舱位置及长度。这是改变浮态的有效方法,尤其是对中机型或尾机型船适用。一方面,它改变了空船重心的位置,另一方面,也改变了货舱的位置,也即改变了货物重心的位置。但对尾机型船机舱位置调整时要保证货舱舱容,否则不得调整。
- (2) 改变燃油舱、淡水舱的布局。用调整油水舱纵向位置来调整 满载出港的浮态是有效的。
 - (3) 改变浮心纵向位置。

5.3.2 总体布置与船舶浮态