

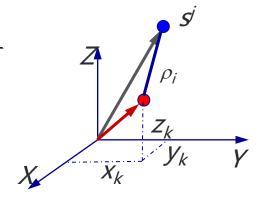
主讲人:李亮

伪距

伪随机码测量得到的伪距中包含接收机时钟误差、大 气延时以及卫星星历模型误差等。

伪距与真实距离的关系

经导航电文修正后,伪距输出为 $\rho_k^j = R_k^j + cd\tau_k$


接收机与卫星的真实距离为:

$$R_k^j = |\mathbf{X}^j - \mathbf{x}_k| = \sqrt{(X^j - x_k)^2 + (Y^j - y_k)^2 + (Z^j - z_k)^2}$$

伪距与真实距离的关系为:

$$\rho_k^j = |\mathbf{X}^j - \mathbf{x}_k| + cd\tau_k$$

伪距法定位解算过程

给定义概略位置: $\hat{\mathbf{x}}_k = [\hat{x}_k, \hat{y}_k, \hat{z}_k]^T$

则真实位置为 $\mathbf{x}_k = \hat{\mathbf{x}}_k + \Delta \mathbf{x}_k$

对观测误差 $v_k^j = \rho_k^j - R_k^j - cd\tau_k$ 在概略位置处进行泰勒展开,

并忽略二次以上高次项: $v_k^j = \mathbf{I}_k^j \Delta \mathbf{x}_k - cd\tau_k - L_k^j$

同时观测n(n≥4)颗卫星时:

$$\begin{cases} v_k^1 = \mathbf{I}_k^1 \Delta \mathbf{x}_k - cd\tau_k - L_k^1 \\ v_k^2 = \mathbf{I}_k^2 \Delta \mathbf{x}_k - cd\tau_k - L_k^2 \\ \vdots \\ v_k^n = \mathbf{I}_k^n \Delta \mathbf{x}_k - cd\tau_k - L_k^n \end{cases}$$

伪距法定位解算过程

将方程写成矩阵形式:V=AX-L

则解算结果为:

- (1) $n = 4 \text{时} \hat{X} = A^{-1}L$
- : (2) $n \ge 4$ 时 $\hat{X} = (A^T A)^{-1} A^T L$

指定加权值时
$$\hat{\mathbf{X}} = (\mathbf{A}^T \mathbf{R}^{-1} \mathbf{A})^{-1} \mathbf{A}^T \mathbf{R}^{-1} \mathbf{L}$$

•

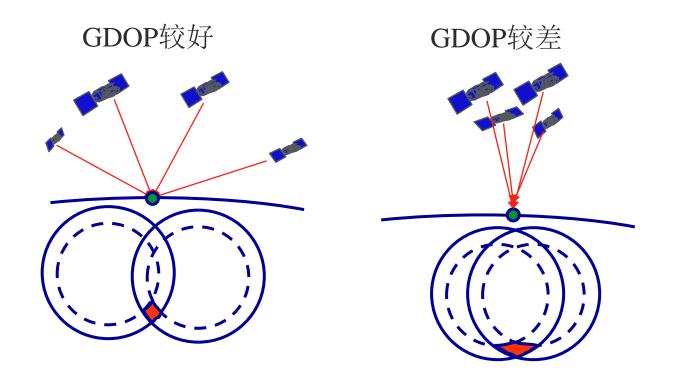
定位误差:
$$\mathbf{v}_{\hat{\mathbf{X}}} = \left[v_x, v_y, v_z, v_\tau\right]^{\mathrm{T}}$$

$$\mathbf{v}_{\hat{\mathbf{X}}} = \mathbf{X} - \hat{\mathbf{X}} = (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{V}$$

假设:
$$E[\mathbf{V}] = \mathbf{0}$$
 $E[\mathbf{V}\mathbf{V}^{\mathrm{T}}] = \sigma_{\mathrm{URE}}^{2}\mathbf{I}$

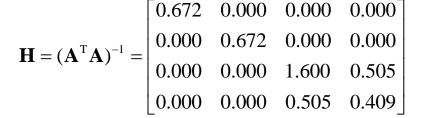
$$\mathbb{E}[\mathbf{v}_{\hat{\mathbf{X}}} \mathbf{v}_{\hat{\mathbf{X}}}^{\mathrm{T}}] = \sigma_{\mathrm{URE}}^{2} (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1}$$

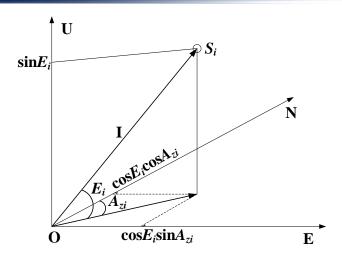
结论1:


卫星几何位置一定时,观测误差越大,定位误差越大。

$$\mathbf{E}[\mathbf{v}_{\hat{\mathbf{x}}}^{2}] = \begin{bmatrix} E[v_{x}^{2}] & E[v_{x}v_{y}] & E[v_{x}v_{z}] & E[v_{x}v_{\tau}] \\ E[v_{y}v_{x}] & E[v_{y}^{2}] & E[v_{y}v_{z}] & E[v_{y}v_{\tau}] \\ E[v_{z}v_{x}] & E[v_{z}v_{y}] & E[v_{z}^{2}] & E[v_{z}v_{\tau}] \\ E[v_{\tau}v_{x}] & E[v_{\tau}v_{y}] & E[v_{\tau}v_{z}] & E[v_{\tau}^{2}] \end{bmatrix} \begin{cases} \sigma_{x}^{2} = E[v_{x}v_{x}^{T}] = E[v_{x}^{2}] \\ \sigma_{y}^{2} = E[v_{y}v_{y}^{T}] = E[v_{y}^{2}] \\ \sigma_{z}^{2} = E[v_{z}v_{x}^{T}] = E[v_{z}^{2}] \\ \sigma_{z}^{2} = E[v_{\tau}v_{\tau}^{T}] = E[v_{z}^{2}] \end{cases}$$

$$\begin{cases} \sigma_x^2 = \mathrm{E}[v_x v_x^{\mathrm{T}}] = \mathrm{E}[v_z^2] \\ \sigma_y^2 = \mathrm{E}[v_y v_y^{\mathrm{T}}] = \mathrm{E}[v_y^2] \\ \sigma_z^2 = \mathrm{E}[v_z v_z^{\mathrm{T}}] = \mathrm{E}[v_z^2] \\ \sigma_\tau^2 = \mathrm{E}[v_\tau v_\tau^{\mathrm{T}}] = \mathrm{E}[v_\tau^2] \end{cases}$$

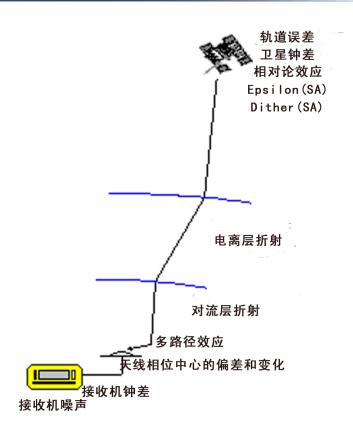

定义DOP(精度因子):

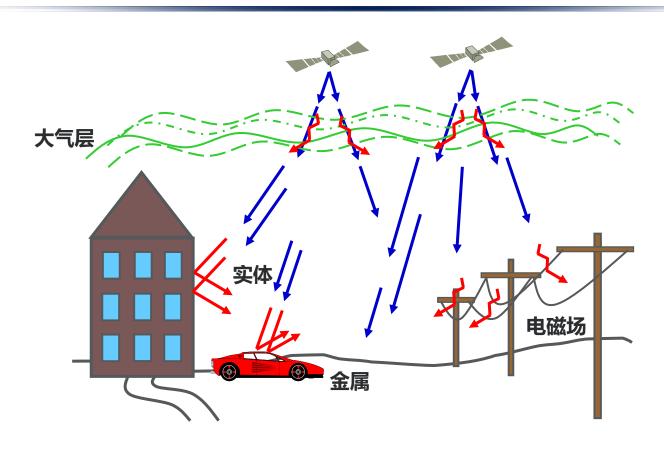

几何DOP-- GDOP =
$$\sqrt{h_{11} + h_{22} + h_{33}} + h_{44}$$

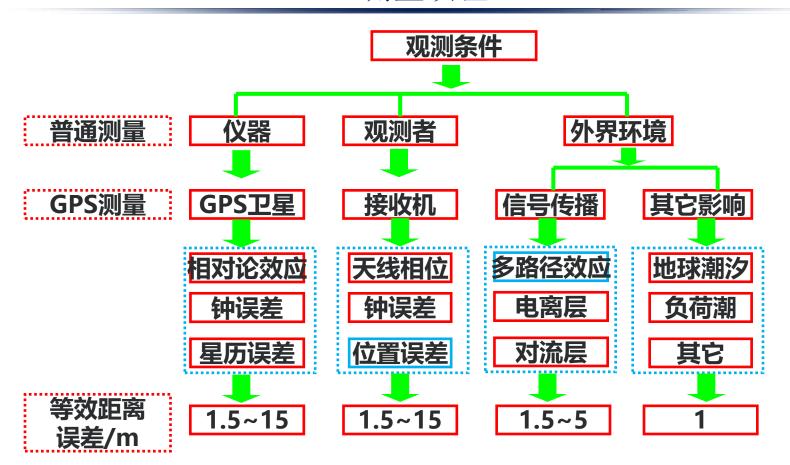
位置DOP-- PDOP = $\sqrt{h_{11} + h_{22} + h_{33}}$
H = $(A^T A)^{-1}$ 水平DOP-- HDOP = $\sqrt{h_{11} + h_{22}}$
垂直DOP-- VDOP = $\sqrt{h_{33}}$
时间DOP-- TDOP = $\sqrt{h_{44}}/c$

$$\mathbf{A} = \begin{bmatrix} \cos(E_1)\sin(A_{Z1}) & \cos(E_1)\cos(A_{Z1}) & \sin(E_1) & -1 \\ \cos(E_2)\sin(A_{Z2}) & \cos(E_2)\cos(A_{Z2}) & \sin(E_2) & -1 \\ \cos(E_3)\sin(A_{Z3}) & \cos(E_3)\cos(A_{Z3}) & \sin(E_3) & -1 \\ \cos(E_4)\sin(A_{Z4}) & \cos(E_4)\cos(A_{Z4}) & \sin(E_4) & -1 \end{bmatrix}$$

	卫星 1	卫星 2	卫星 3	卫星 4
仰角	5°	5°	5°	90°
方位	0°	120°	240°	0 °




卫星导航系统的组成:


空间段 (卫星星座)

地面段 (控制部分)

用户段 (接收机)

误:	对测距的影响 (m)		
上 冷 日 <i>壮</i> 垭 左 坐	电离层延迟	1.5~15.0	
与信号传播有关 的误差	对流层延迟		
砂块左	多径效应		
	星历误差	1.5~15.0	
与卫星有关的 误差	时钟误差		
	相对论效应		
	时钟误差	1.5~5.0	
与接收机有关 的误差	位置误差		
的决在	天线相位中心变化		
甘ウ担羊	地球潮汐	1.0	
其它误差 	负荷潮		

主讲人:李亮